Convergence performance comparison of quantum-inspired multi-objective evolutionary algorithms

نویسندگان

  • Zhiyong Li
  • Günter Rudolph
  • Kenli Li
چکیده

In recent research, we proposed a general framework of quantum-inspired multi-objective evolutionary algorithms(QMOEA) and gave one of its sufficient convergence conditions to Pareto optimal set. In this paper, two Q-gate operators, H2 gate and R&N2 gate, are experimentally validated as two Q-gate paradigms meeting to the convergence condition. The former is a modified rotation gate, and the latter is a combination of rotation gate and NOT gate with the specified probability. To investigate their effectiveness and applicability, several experiments on the multi-objective 0/1 knapsack problems are carried out. Compared to two typical evolutionary algorithms and the QMOEA only with rotation gate, the QMOEA with H2 gate and R&N2 gate have more powerful convergence ability in high complex instances. Moreover, the QMOEA with R&N2 gate has the best convergence in almost all of experiment problems. Furthermore, the appropriate ε value regions for two Q-gates are verified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

On the Convergence Properties of Quantum-Inspired Multi-Objective Evolutionary Algorithms

In this paper, a general framework of quantum-inspired multiobjective evolutionary algorithms is proposed based on the basic principles of quantum computing and general schemes of multi-objective evolutionary algorithms. One of the sufficient convergence conditions to Pareto optimal set is presented and proved under partially order set theory. Moreover, two improved Q-gates are given as example...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir

In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2009